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OPTIMALITY CONDITIONS IN AXISYMMETRIC PROBLEMS 
OF ELASTICITY THEORY* 

S.B. VIGDERGAUZ 

The result /l/ of the optimality of equi-stressed contours in a loaded plane is ex- 
tended to the case of a space with cavities that is axisymmetric.Boundaryconditions 
are found to determine the shape of the optimal cavities, the inverse axisymmetric 
problem of elasticity theory, and its analytic solution is obtained in the case of 
a single cavity. 

Let an elastic space S be weakened by a set of n closed cavities that are symmetric re- 
lative to the z axis of a cylindrical coordinate system (r,z, 8). Normal pressure of constant 
intensity p acts on the cavity surface rh. (k= 1, 2,. . ., n), and a homogeneous stress field is 
given at infinity 

er a = (T$ = f7,, Is,- --= q,; q1, q2 > 0 (1) 

Letasectionthrough Z ofthedomain S by a meridian plane (r,z) be denoted by the section 
rk - Tk, Ii = 1, 2, . . ., n (Fig.l), and the union of yk. and rk by y and 1‘, respectively. 

t t t%t t t 
The state of stress at each point of (s f r) is character- 

ized by the value of the positive function F of the stress 
tensor invariants I,, Ia, proportional to the Mises plasticity 
criterion 

F (I,. 1J = I,? + 31, 

The function Fevidently depends also on the space variables 

The stresses in (S-i-r) are optimal if F,, the maximumin 
the domain of F (r. 2) , reaches the minimally possible value for 
a certain boundary /l/: 

I 1 If,1 1 1 
f == minr F, = minr mar,.,, F (r, z) (2) 

r,zE’+y 

Fig.1 

Furthermore, condition (2) is also considered with other 
functions instead of F. The boundaries at which it is satisfied will be called minimaxes 
relative to the appropriate functions. Therefore, the inverse problem for the domain under 
consideration is to seek surfaces that are minimal relative to F (r, 2). 

To do this we represent the stress field in (3 -i-r) in the form of the sum of the homo- 
geneous field (1) and the perturbations induced by the cavities. Because of axial symmetry, 
only the components IS?, ae, or, rrz of the perturbed state are different from zero. Theydecrease 
at infinity, and satisfy the following boundary conditions on y /2/z 

where s is arclength of the contour yk, k = 1, 2, . . ., n. 

The invarient I, is now written in the form 

(G, v are elastic constants of the medium, 6 is the relative volume expansion of the perturbed 
state that decreases at infinity). In the absence of volume forces, the functions Z,(r,z) and 
S(r,z) are harmonic in s/3/. 

Relying on the maximum principle for harmonic functions, we obtain the inequality 

max 11, (r, 2) ( -. (I& = 2q, + q2; r, 2 E v (4) 
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where the equality sign is achieved only in case 1, = const in (Z $ v). In the plane case, an 
estimate of the type (4) is presented in /1,4/. 

It follows from (4) that the surfaces rk (k = 1,2,...,n) are minimaxes with respect to 
II,(r,z) ( if the following condition is satisfied in (X + y) 

ti (r, z) = 0 (5) 

Let &denote such surfaces while rk will be kept to denote arbitrary surfaces. Evidently, 
Ak are minimaxes also with respect to the superharmonic function (II(r,z)+ c)" which does not 
achieve a maximum at internal points of (S _I- r), and c is an arbitrary constant. 

We now find the stresses on ~1. Under the condition (5) the field of perturbations in 
(S + r) is described by the equations /2/ 

a(ur) at0 a (4 aw 
az=rar:ar =-ral (6) 

(7) 

(u,w are the displacements in a cylindrical coordinate system). Substituting (7) into (3) and 
using (6), we have on & the meridian section of Ak 

2G[q$+qG]=(p+q,)r-$ 

Alternately, integrating these identities with respect to s along ikr we obtain 

(Gk, Dk are constants of integration). It can be shown that Gk equal zero because of the sym- 
metry of the problem and the uniqueness of m(r,z), hence 

4a+ P 
u=4cr’1L’= 

2ql-~2+Pz+Dk 
4c (8) 

It follows from (8) that in a local coordinate system (% t, e, on Ak 

(n,t are the arclengths along the positive normal and tangent to hk). 
Returning to the original state of stress with components (~~~,c~~,cr,,~, we have on Ak(cr,O = 

-P): 

(9) 

where by symmetry QO, z&Q, z*$ = 0. 
Therefore, the stresses oa" and ut" take constant values on the system of surfaces ~~ 

defined by the condition (5). From the above it follows that these values are equal. By anal- 
ogy with the plane problem /5/, we call such surfaces equistressed. 

Under the condition (S), the invariant 

rz= z$ + Tir + r:, - a,uy - uyur - G,U, = r:, + r;, + &++[u:+ u;+ o:I-- Cl 

andthe functions Fare superharmonic functions of the space variables. The proof simplifies 
in a Cartesian coordinate system. 

Taking into account that for I, = con& all the stress tensor components are harmonic func- 
tions /3/, we obtain (V*is the Laplace operator) 

VlIz = zI(VT,,)a + (VZ”,)” + (VTx,)2 + (v%)2 + PqJ’ + (Vuz)21 a0 

from which it follows that 
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V2F = VzI,3 + 3V"I, = 3V21, > I) 

Therefore, F(r,z) does not reach the maximum at internal points of the domain /6/. 

On the arbitrary boundary r, the estimate (r,z E y) 

2F (r, z)= (CT,'- IJ~~)~$- (I&' - ~0")~ + (ato - o@")' 

(%a0 - ary + (on0 - UeO)" = $2 + 7p(o,O + OfjO) + (ut0)2+((J~")Q 

(10) 

is valid for F. In deriving (10) the following known inequality was used (a, b are arbitrary 

real numbers) 
2 (a' -1. b") & ;a + b)Z 

There results from (9) that the equality signs are reached in (10) on .\. The proof of 
the optimality of these surfaces is performed by a chain of inequalities constructed by a 

scheme proposed in /l/ (t is a point in E ; y, T is on y, I, in 2 + h and z,, on a): 

max F(t) >mmaz F(T) > max F (zo)>F((to) 2 (F)o, -1 (C/I - v?)’ 
where / - 1 .l P,/, + (I.2 + 3f')?. 

The gain from applying optimal contours can be estimated by means of the quantity a=_ 

v' F,,, where F,, is the maximum value of F for the domains being equated. 

Thus, by using the solution of the direct problem for a space with a toroidal cavity /2/, 

we obtain that a > 1.42 for p = 0, ql= q2 = 1, ?/Q= 0.5. 

Here rl is the radius of the generating circle of the torus, ~2 is the distance between 

its center and the axis of symmetry. The quantity F, had the lower estimate in terms of the 

maximum F on the domain boundary. 

Actual seeking of the optimal contours is associated with great difficulties and in the 

general case reduces to the solution of an inverse boundary value problem for the elliptic 

system (6), which degenerates onto the axis T with the condition (8) given on the unknown 

boundary in the (T,z) plane. 

For n = 1 an ellipsoid of revolution (spheroid) is optimal. Setting ql> q2, P = 0 for 
definiteness, we prove this by using the solution of the direct problem of elasticity theory 

for the exterior of a compressed spheroid s = s0 under the load (1) in elliptic coordinatess,p, 

obtained on the basis of the Papkovich-Neuber representation /3/ 

The relationships (G is a scale factor) 

_=L!l b” 
a’ z+s,” ’ b<a, r = G I/ (1 - pa) (1 + sa), z = Gsp 

are valid for the axes a, b of the ellipsoid. 

The functions ol(s), wJ(s) have the form 

2ol(s)= arcctgs -s 
1 + s' 

m3(S)= f - arcctgs 

The specific form of the functions D,, D, is not needed. 

The coefficients h,x are determined from the system of equations 

11) 

(12) 

(13) 

(14) 

The values of ol, o3 are taken for s = s,. 

It is seen that the expressions (11) satisfy condition (8) for S = So if X = 0. It folloWs 

from (12)-(14) that this is possible for such a ratio of the axes when the quantity a,, is a 

root of the equation 

++(+ --&)&--($-++)arcctgso=O (15) 
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The dependence (12), (15) of the quantity b/a on the ratio q3/q1 is shown in Fig.2 (curve 

1). It is seen that equal-strength surfaces exist in the whole range q1 &q3 >O, not exclud- 
ing the value q3 = 0. In this case a circular slot is optimal and of equal-strength, as can 
be confirmed by solving the direct problem for it /3/. For IJ~ = (j3 the surface A becomes a 

sphere, and the relationship (9) goes over into the known result (50 = csI = 3!Zq, /I/. 

1 Let us recall that the ratio between the axes of theoptimalellipse 
in the plane problem is simply equal to the ratio of the loads h'a = q3'(11 

When the load along the axis of rotation is greater in magnitude 
than the load in the latitudinal plane, a prolate spheroid is optimal. 
In this case the functions ol(s), wg(s) have the form 

J//y $1 
0.5 I 

Fig.2 

s+1 oh(s)=+-In= -$ 
s + 1 

20, (s) = & - + In= 

Transposing the load notation, we obtain the following dependence fromthe condition x = 0 

represented by 
the additional 

curve 2 in Fig.2. The solution of the optimization problem exists Only under 

constraint 
&7&7, 21 

If w(r,z) is identified with the velocity potential cp (7, z), and ru (r, Z) with the Stokes 
function 'P((r,z) taken with the opposite sign /8/, then the problem under consideration admits 
the following hydrodynamic analogy: find the shape of the surface 4 of an axisynnnetric system 
of solids around which a steady ideal fluid flow streams along the z axis under the condition 
that its velocity is given at infinity 

v_ = I/* (42 + P) 

and on A 
v = ‘iz (2ql _I- qz + p) &his 

1. 

2. 

3. 
4. 

5. 
6. 
7. 
8. 

For IZ>I this permits utilization of numerical methods of hydrodynamics to find .I. 
A similar analogy was noted for the plane problem in /5/. 
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